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Abstract

Confidence limits are common place in physics analysis. Great care must be taken

in their calculation and use, especially in cases of limited statistics when often one-

sided limits are quoted. In order to estimate the stability of the confidence levels

to addition of more data and/or change of cuts, we argue that the variance of their

sampling distributions be calculated in addition to the limit itself. The square root

of the variance of their sampling distribution can be thought of as a statistical error

on the limit. We thus introduce the concept of statistical errors of confidence limits

and argue that not only should limits be calculated but also their errors in order to

represent the results of the analysis to the fullest. We show that comparison of two

different limits from two different experiments becomes easier when their errors are

also quoted. Use of errors of confidence limits will lead to abatement of the debate

on which method is best suited to calculate confidence limits.
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1 Introduction

Confidence limits are used to express the results of experiments that are not yet

sensitive to discover the object of their searches. In such cases, often a one-

sided limit is used to delimit the quantity of interest. Limits from different

experiments are compared and attempts are made to combine them. These

limits can fluctuate up or down with the addition of more data or the changing

of the analysis parameters. A measure of the robustness of the limits is given

by the width of the sampling distribution of these limits, where the sampling

distribution is obtained over an ensemble of similar experiments simulated

by Monte Carlo. The standard deviation of the sampling distribution of such

limits can be thought of as an error on the limit.

We introduce the concept of error of confidence limits by a simple Gaussian

example. Consider a sample of n events, where n = 10, characterised by the

variable x distributed as a unit Gaussian, with a mean value µ = 0 and

standard deviation σ = 1. Then the average value x̄ of the n events will be

distributed as a Gaussian of mean value zero and standard error σ/
√

(n). The

unbiased estimate of σ, the variance of the distribution is given by s where,

s2 =
1

n − 1

i=n∑
i=1

(x2
i − x̄2) (1)

Figure 1 shows the distribution x̄ of our sample of 10 events for a large number

of samples. The expected value x̄ is zero and its standard deviation is 0.32

which is consistent with the theoretical value of σ/
√

(n)=0.316. Figure 2 shows

a histogram of s deduced from a sample of 10 events for a large number of

such samples. The average value of s is ≈ 1.0, showing that s is an unbiased

estimator of σ. The important point to note is that s also has a variance and
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Fig. 1. The distribution of the sample average x̄ over a large sample of events.

that its standard deviation is 0.23. This is as expected from theory where the

error on the standard deviation of a Gaussian sample [1] is ≈ σ/
√

(2n)=0.223.

Having got the value of x̄ and s for our sample, one can proceed to work out

confidence limits for our observation. The two-sided 68% CL limits for our

observation of x̄ will be given by the standard error σ(x̄) of x̄ and we would

write the observation of x̄ from our sample as

x̄ ± σ(x̄) = x̄ ± s/
√

(n) = −0.188 ± 0.408 (2)

where the numbers correspond to our sample of 10 events. Note that the

standard error σ(x̄) = 0.408 derived from our sample of 10 events is quite

different from the theoretical value of 0.32, but this is merely due to statistical

fluctuation.

3



Fig. 2. Unbiased estimate s of the standard deviation of the σ of the Gaussian

distribution deduced from a sample of n = 10 events. The average value of s is ≈

1.0 and its standard deviation is 0.23.

One can also work out the two-sided 90% CL limits for our observation of

x̄ which would correspond to ±1.64 σ(x̄) and quote the 90% CL limits as

−0.188 ± 0.669, which is the value observed for our sample of 10 events.

Figure 3 shows the distribution of the 90% CL two-sided errors on the sample

average, over a large number of samples. The mean value of the distribution

is 0.505 which is close to the theoretical value of 1.64 σ(x̄)=0.519. Note that

the standard deviation of the 90% CL errors in Figure 3 is 0.12. We can also

calculate the standard deviation of the 90% CL error from our sample as 1.64

σ(x̄)/
√

(2n) and this is plotted in figure 4. The mean value of the standard

deviation of the 90% CL error in figure 4 is 0.113, in line with the theoretical

value of 0.116. When the mean value is of interest, we quote the mean value
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Fig. 3. The distribution of the calculated two-sided 90% CL errors of the mean value

of the sample.

and the standard error on the mean value as in equation 2. This enables us

to gauge the fluctuations in the mean value from sample to sample. When the

confidence limit is of interest, we propose that we quote the confidence limit

along with its standard error. This would enable us to gauge the significance

and stability of the confidence level. In our example we would write this as

x̄ − 1.64σ(x̄) ± σ90 < µ < x̄ + 1.64σ(x̄) ± σ90 at 90% CL (3)

where µ is the expectation value of x̄ and the standard error σ90 on the 90%

CL limit would be given by

σ90 ≈ σ(x̄)
√

(1 + (1.64)2/(2n) (4)
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Fig. 4. The distribution of the calculated error on the two-sided 90% CL error of

the mean value of the sample.

In our sample of 10 events, this would lead to

−0.857 ± 0.434 < µ < 0.481 ± 0.434 at 90% CL (5)

Note that the error on the lower and upper 90% CL limits are correlated by

the error on x̄ which they have in common. Half the difference between the

lower and uper 90 % CL limits is 1.64σ(x̄) and its error is 1.64σ(x̄)/
√

(2n).

These two errors added in quadrature yield the formula in equation 4. The

error in the 90% CL limit indicates to the reader the stability of the limit and

the statistical significance of the result.

Very often, we are not interested in the mean value of our observations but

are more interested in the confidence limits, due to the low statistics of the
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observation. We may only be interested in an upper (one-sided) bound. So we

would quote a 95% CL upper bound on µ as

µ < 0.481 ± 0.434 at 95% CL (6)

A second sample of 10 events from the same distribution may yield a result

µ < 0.354 ± 0.335 at 95% CL (7)

but we do not fall into the trap of declaring the second result a better limit

than the first, because both the limits are the same within errors. If we did

not quote the errors on the limits, we would be tempted to declare the second

limit superior to the first.

Similarly, as analyses proceed in discovery searches, events can go in and out

of samples, as cuts are refined and more data is accumulated. Appearance of

a single event in a sample can change the confidence limit drastically, as was

the case in the search for the top quark. These changes can be understood as

fluctuations of the confidence limit within errors, if we were to quote not only

the confidence limit but also its error.

2 Reconciliation with the Neyman definition of Confidence limits

The construction of confidence levels as written down by Neyman [2] may be

understood within the context of our current example as follows. Using our

first sample of 10 events drawn from a unit Gaussian, we calculate a mean

value x̄ = −0.188. Let us assume, for the sake of argument, that we know the

variance of the mean value to be 1.0/
√

(10). In this case, we can construct
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the Neyman confidence level for µ, the expectation value of x̄, as illustrated

in Fig. 5. The parameter µ is plotted on the ordinate and x̄ is plotted on

the abscissa. For each value of µ, the 90% CL limits of x̄ are delineated by

horizontal lines that are delimited by the curves x̄1(µ) and x̄2(µ), assuming x̄

is distributed about µ with variance 1.0/
√

(10). If the true value of µ is µ0,

then x̄1(µ0) < x̄ < x̄2(µ0) with 90% probability. If we now measure a value

of x̄ = −0.188, then we can construct the interval AB which will contain the

true value of µ0 if and only if x̄1(µ0) < x̄ < x̄2(µ0). In other words the interval

AB has a probability of 90% (also called “coverage”) of containing the true

value µ0. The interval AB is thus defined to be the 90% CL interval of µ.

If we were however to repeat our measurement of x̄ by creating other samples

of 10 events each, we would get different lines AB, each of which would have a

90% chance of containing the true value µ0. Most of the time, one is interested

in a central value of x̄ and an interval such as AB to denote the statistical

errors (robustness) of the measurement of x̄. However, in experiments with

poor statistics, the central value x̄ is often not of interest and the one-sided

limit (either point A or B) is often quoted. At this stage, the points A or B

become point measurements in their own right, and it is informative to quote

their statistical errors in order to evaluate their robustness.

This is illustrated further in Fig. 6, where we now no longer assume we know

the variance of x̄. This is computed from the data and will fluctuate from

sample to sample. These so-called “nuisance variables” are integrated over to

yield a final confidence limit in usual practice, which would be appropriate

if one were interested in the central value of x̄. If however, one is interested

in the one-sided limit B, it would be appropriate to use them to estimate

the robustness of the point B due to statistical fluctuations. We use the error
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bands shown for x̄ and σ(x̄) in the figure to compute the sampling error band

on the point B.

Fig. 5. The Neyman construction of the confidence level for our example

3 An Illustrative example

We can illustrate the need for confidence limits errors using the following

example. In 1995, the DØ collaboration published limits on the top quark

mass and cross section [3]. Figure 7 shows [3] the 95% CL upper limit on top

quark production as a function of top quark mass using 13.5 pb−1 of data.

The confidence limit curve is used to derive a lower limit of 128 GeV/c2 for

the top quark mass at 95% CL. In the same paper, another figure, reproduced

here as Figure 8 shows the top quark production cross section as a function

of the top quark mass. This curve has a 1 σ error band around it. But the top
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Fig. 6. The Neyman construction modified to illustrate fluctuations in x̄ and σ(x̄)

for our example. The error band due to σ(x̄) and band due the error in σ(x̄) are

shown. These are added in quadrature to produce the sampling error band of point

B.

quark production cross section may be thought of as the 50% CL upper/lower

bound on the cross section. Surely, if the 50% CL limit has an error band

around it, the 95% CL limit should also have its own error band. In what

follows, we show how to calculate errors in confidence levels in general and

use the method to calculate the error in the 95% CL curve shown in Figure 7.

4 A general algorithm to calculate errors in Confidence Limits

Most experiments have elaborate algorithms to calculate confidence limits for

their results. Such algorithms will include detailed calculations and parametriza-
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Fig. 7. The 95% confidence level [3] on σtt̄ as a function of top quark mass. Also

shown are central (dotted line) and low (dashed line) theoretical cross section

curves [4].
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Fig. 8. Measured tt̄ production cross section (solid line, shaded band = one standard

deviation error) as a function of top mass [3]. Also shown are central (dotted line),

high and low (dashed lines) theoretical cross section curves [4].

tions of efficiencies and acceptances. In addition, they will have several other

input parameters such as the number of events observed, total integrated lu-
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minosity and the error on the luminosity. Let us denote the input parameters

as ai, i = 1, n. The output of such a program will be the confidence limits

Cα, α = 1, k. Figure 9 illustrates this general case. Then, for small changes in

Fig. 9. Schematic “black box” representation of a general confidence limit calculating

algorithm, that has input parameters a1, a2..a4 and outputs a confidence level C in

a single variable.

the input parameters, the following equations hold.

δCα =
δCα

δai

δai (8)

< δCαδCβ >=
δCα

δai

δCβ

δaj

< δaiδaj > (9)

where the repeated indices i, j are meant to be summed over and the symbols

<> indicates the average over the enclosed quantities. The quantity on the

left hand side of the equation is the error matrix in the confidence limits Cα,

denoted ECC . The above equation can be re-written in matrix form as

ECC = T̃EaaT (10)

where Eaa is the error matrix of the input parameters ai, i = 1, n and T is

the transfer matrix, such that Tα,i = δCα

δai
. T can be determined numerically
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by varying the input parameters to the limits algorithm. The error matrix Eaa

should be known to the experimenter, yielding the required error matrix ECC .

4.1 An Example

Let us consider the calculation of C, the 95% CL upper limit to the top quark

cross section as published in reference [3]. The output of the limits algorithm

is C. The input parameters can be taken as three, namely a1, the total number

of top quark events observed, a2, the luminosity×efficiency×branching ratio

of the channels under consideration, summed over the channels and a3, the

error in the luminosity. We have used a single parameter a2 summed over the

channels to simplify the calculation. In principle, all channels may be varied

independently, but since they are uncorrelated, and the dominant error is due

to the common luminosity factor, the above simplification will result. We use

this example for illustrative purposes to show how such a calculation may

proceed.

The error matrix of the parameters Eaa is a 3×3 diagonal matrix, since the pa-

rameters are uncorrelated. The variance of a1 is the number of events observed,

the variance of a2 is calculated using the error in luminosity, and the variance

of a3 is calculated assuming that there is a 50% uncertainty in the error in the

luminosity. The transfer matrix T is calculated by numerical differentiation.

Figure 10 shows the contribution to σC , the error in the 95% CL upper limit

to the cross section, due to the three parameters a1, a2 and a3 as a function of

the top quark mass. The overall error σC , obtained by adding the component

errors in quadrature, is also shown as a function of the top quark mass. It
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can be seen that the contribution due to uncertainties in a1, is negligible. So

we are not sensitive to errors in our guess of 50% uncertainty to the error in

the luminosity. The overall error is dominated by the fluctuation in the total

number of events. This example thus graphically illustrates why confidence

limits fluctuate up and down as events fall in and out of the selected sample

as the analysis proceeds and more data is accumulated. The 95% CL upper

limit to the cross section is merely fluctuating within its error as all statistical

quantities do. When we are interested in a confidence limit, it thus behooves

us to compute not only that limit but also its error. We may superimpose

Fig. 10. The components of σC , the error in the 95% CL top quark cross

section upper limit, due to uncertainties in (a) error in luminosity (b)

Luminosity×efficiency×branching ratio (c) The overall number of events observed

as a function of top quark mass. (d) shows the overall error σC .

these errors on Figure 7 yielding Figure 11. The 95% CL lower limit to the
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top quark mass can then be quoted as 128+14
−18 GeV/c2, the error bars indicating

the range of fluctuation for the mass limit. This implies that if one were to

repeat the DØ experiment numerous times with an integrated luminosity of

13.5 pb−1 fluctuating within its errors, one would expect to get a top quark

lower mass limit that fluctuates within the errors quoted.

Fig. 11. The DØ 95% CL upper limit to the top quark cross section [3] with its

accompanying error band, as calculated by the method in the text.

5 Combining limits

Combining limits from two different experiments is difficult at best. We remark

here that in simple Gaussian cases, quoting the limit and its error provides

us with enough information to make a combined result, as may be seen by

examining equations 3 and 4. Using the value of the limit and its error, we

may deduce x̄ and σ(x̄), if the number of events n in the sample is known.

Having the mean and its variance in each case, we can combine the Gaussians,
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leading to a new variance for the combined data. The combined mean of the

two distributions can be found as usual by the weighted average of the two

means, the weights being the inverse variances. It must be emphasized that

the combined limit is not simply the weighted average of the two limits as in

the case of the means.

One can further ask if the two limits are consistent with each other, if the

errors on the limits are quoted, as shown below.

6 Comparing Limits from two different algorithms

When two different algorithms are used on the same data, two different limits

will result that are correlated. The correlations will be due to the common

input into the two algorithms. We can think of the “black box” in Fig. 9 as

consisting of two different algorithms producing as output C1 and C2, the

two confidence levels in question, using the same common input ai, i = 1, n.

We can then use equation 10 to work out ECC , the error matrix of the two

confidence level algorithms and use this matrix to decide whether the two

confidence levels are significantly different from each other as per,

var(C1 − C2) = var(C1) + var(C2) − 2cov(C1, C2) = E11 + E22 − 2E12(11)

7 Conclusions

We have motivated the concept of statistical error for a confidence limit, as

the standard deviation of the sampling distribution of such limits over an

ensemble of similar experiments. In cases of limited statistics, our estimates of
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the confidence limits can fluctuate significantly. Comparing confidence limits

becomes more meaningful when these errors are quoted. Different methods

exist (e.g Bayesian, Frequentist) for calculating these limits. The differences

between limits computed in the same experiment using different methods will

lose their significance if the limits are shown to be the same within their

sampling error. Often in analyses with limited statistics, the appearance of a

new event can make significant differences to the limit calculation. An error

analysis of the limit will show that the limit is exhibiting statistical fluctuation

as it is entitled to. We propose that experimenters publish confidence limits

to their data accompanied by the error on the limits.
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